Electronic Resource
UNDERSTANDING MASS SPECTRA : A BASIC APPROACH Second Edition
Mass spectrometry (MS) differs from other common forms of organic spectral analysis in that the sample does not absorb radiation such as infrared, ultraviolet, or radio waves from the electromagnetic spectrum. In contrast to infrared (IR) or nuclear magnetic resonance (NMR) spectrometry, both of which identify compounds with specificity comparable to that of mass spectrometry, MS is a destructive method of analysis—that is, the sample cannot be recovered after mass spectral analysis. On the other hand, MS is highly sensitive and requires less sample than either IR or NMR in order to provide more information about the structure of the analyte. Mass spectrometers are typically not standalone instruments. Most often they are connected physically and electronically to a chromatograph as well as a computer. Figure 1.1 shows a typical arrangement of a chromatograph/mass spectrometer/ computer system. The chromatograph separates mixtures and introduces the sample into the mass spectrometer. The mass spectrometer ionizes analyte molecules, then separates and detects the resulting ions. The computer system controls the operation of the chromatograph and the MS, and provides data manipulation and storage during and after data collection. For volatile samples, gas chromatography (GC) is used for mixture separation. For nonvolatile or thermally labile molecules, high pressure liquid chromatography (HPLC or just LC) is used. The abbreviated terms GC/MS and LC/MS are commonly used to describe the combination of these chromatographic techniques with MS.
EBK-00232 | 543.0873/Smi-u | Perpus Pusat | Tersedia |
Tidak tersedia versi lain